
 
 

1 INTRODUTION 

The aim of the our work has been to present a very simple numerical method, suitable to define 
the safety of the masonry made of stones even dry assembled or connected with joints filled by 
mortar, that are so typical of many ancient masonry cathedrals particularly in European coun-
tries. This objective has been achieved modelling the arch in rigid voussoirs and tacking ac-
count of a linear formulation founded on the Static Theorem of the Limit Analysis.  
Its main mechanical features are: 
-  inability to carry tension for the contact interfaces; 
-  limited compressive strength at interfaces, obtained considering the closed parabolic N-M      
yield domain opportunely replaced by a piecewise linear yield domain having six or eight sides; 
-  provision for blocks to slide with dilatancy. 

As far as it concerns the modeling -with regard to ordinary masonries made of stones, or of 
bricks having small dimensions compared with the dimensions of the structure-, we have veri-
fied that good results can be obtained already with a discretization of the masonry arches by a 
limited number rigid blocks. That involves a few number of unknowns and conditions and al-
lows to obtain the solution very easily by the Excel program’s solver. 

When the static solution is obtained, the evaluation of the collapse mechanism is pursued 
with the respect of kinematic compatibility conditions. 
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ABSTRACT: The analysis of mechanical behaviour of ancient masonry structures has been the 
subject of a rich literature until now. The results of lots of these works have underlined the par-
ticular importance of the Limit Analysis to estimate the safety of the masonries, when they are 
modeled as discrete systems of rigid blocks. 

In the our study the safety of the masonry pointed arches has been pursued whether evaluat-
ing the collapse multiplier of the live loads, or calculating the lowest admissible thickness for 
assigned loads, by a linear formulation founded on the Static Theorem of the Limit Analysis. 

The pointed masonry arches, discretized in rigid voussoirs, are studied with the assumption 
of inability to carry tension on the interfaces between the voussoir, of limited compressive 
strength and of sliding with dilatancy.  

The solution and the evaluation of the collapse mechanism are obtained with Excel pro-
gram’s solver. Also the representation of this mechanism is pursued with Excel. 
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2 THE PLANNING OF THE PROBLEM 
2.1 The equilibrium conditions for the single voussoir  

Because of symmetry, we refer to an generic half pointed arch discretized into i rigid voussoirs 
(i = 1 to n, being n the number of voussoirs). The generic voussoir is subjected to the stress re-
sultants N, T, M -supposed to be applied in the centroid of each interface- and to the own weight 
Pi applied in its centre of gravity. Others loads can be eventually a fill Pi (R), a wall Pi (M), besides 
vertical or horizontal loads like distributed loads  Qi , or concentrated forces F0, Fv, Fo (Fig. 1). 
The equilibrium conditions for the generic voussoir are so formulated: 

0F FXA e
1

e
0

ee =α++  (1) 

where Ae is a matrix (3x6) depending on the voussoir’s dimensions, Xe is the vector of the un-
known stress resultants on the its two interfaces, F0

e is the vector of the dead loads and F1
e the 

vector of the live loads increasing by the multiplier α 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

2.2  Yield domain for the generic interface  
The stress resultants on the interfaces have to respect the yield domains of the material for slid-
ing and rocking. The yield domains of friction and that of rocking are showed in Figures. 2-3 
where respectively ϕ0 is the friction angle and N°=σ°·A is the limit compressive strength, being 

YC

   F0

C

Fv 

Fo 

Y0

φ i+1

θ0

φ i

Pi(R)

Pi(M)

Qi

Gi

Pi

h L/2 L/2 h

O0

RIxC

O1

(φ i+1-φ i)/2

X0C' O'1

Ti+1

Ti

Ni+1

Ni

Mi+1

Mi

YC

   F0

C

Fv 

Fo 

Y0

φ i+1

θ0

φ i

Pi(R)

Pi(M)

Qi

Gi

Pi

h L/2 L/2 h

O0

RIxC

O1

(φ i+1-φ i)/2

X0C' O'1

Ti+1

Ti

Ni+1

Ni

Mi+1

Mi

Ti+1

Ti

Ni+1

Ni

Mi+1

Mi

 
Figure 1 : Forces acting on the  generic voussoir 

 
Figure 2 : Limit surface for sliding 

 
Figure 3 : Limit surface for rocking 
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σ° the limit compressive stress and A=t·h the cross-section area, where t is the  thickness of arch 
and the depth h is the distance between the intrados and extrados lines.  
The piecewise linearization of the yield domain in Figure 3 has been opportunely obtained by 
two polygons -one circumscribed and the other inscribed- having respectively six and eight 
sides (Figs.4-5).  

 
 
The conditions that have to be imposed on every generic interface, according to the kind of lin-
earizated domain, respectively are:                      
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or: 
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Obviously the domain (3) –inscribed polygon– is more restrictive of the domain (2)–
circumscribed polygon– and gives advantage over safety. 
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Figure 4 : Limit surface for rocking  
(circumscribed polygon).  

Figure 5 : Limit surface for rocking                
(inscribed polygon). 
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2.3 Governing conditions  

If n and m are respectively the number of the voussoirs and of interfaces, the equilibrium condi-
tions are: 

0F  FX A 10 =α++  (4) 

and the yield domain’s conditions are: 

0TNDXY ≤−=  (5) 

where A is a [3·n x 3·m] matrix, X is a 3·m vector, F0 and F1 are 3·n vectors, α  is the unknown 
collapse multiplier, D is a (k·m x 3·m) matrix - where k is 8 or 10 according to yield domain (2) 
or (3) selected - and TN is a (k·m) vector of known terms. 
The problem is resolved researching the maximum α subject to (4) and (5), with α ≥  0.  

We have obtained the solution of problem making use of Excel. 

2.4 The evaluation of collapse mechanism 
Once the multiplier α has been calculated we can pursue the kinematic problem having in ac-
count of the conditions: 

∆=uAT  (6) 

and of the flow rule: 

λ=∆ TD  (7) 

being u the vector of the degrees of freedom (three for every voussoir), ∆  the vector which col-
lects the displacements between the interfaces (three for every interface) and λ  the vector of the 
generalized strain rates associated to the yield conditions (k for every interface).  

We have pursued also this solution and its collapse configuration making use of Excel. 

3 APPLICATIONS 
3.1 Introduction  
We have examined various types of pointed masonry arches, defined by the x-coordinate xc of 
centroid C of the semi-arch regards to the point O1 (Fig. 1) and by the length RI of the radius of 
intrados line. These two quantity are tied by the following relationships: xc= koL; RI = L(1- ko), 
being respectively ko (ko = 1/3, 1/4,…1/10,..) the coefficient that describes the generic type of 
pointed arch and L the generic span.  
All the arches have been studied like a system of eighteen rigid voussoirs. We have used the in-
scribed yield domain (4) and the symmetry has been taken into account. For all the examples 
examined, have been assigned the following same data: 
-  span L = 4,5m 
-  thickness t = 1m  
-  limit compressive stress σ° = 4 MPa  
-  arch density γA = 16 KN/m3   
-  fill density γf = 16 KN/m3   
-  wall density γw = 16 KN/m3   
-  wall height hw = 1 m 
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3.2 Evaluation maximum loads multiplier 
We have evaluated the collapse multiplier of various types of pointed masonry arches (h = 0.5 
m) subjected to different loads (see table 1). Of some of them, the collapse configuration and 
moreover the curve of the pressures, the diagrams of compressive strength, of shear and of 
bending moment has been represented.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example 1: Equilateral pointed arch subject to a live force F0=10KN acting on the axis of 
symmetry. 

  Table 1   
 LOADS 

  Live Loads 
(KN) 

Dead  Loads 
(KN/m3) 

Angle of  
internal 
friction 

Multiplier 
of live 
loads 

Pointed Arches 
γA=16 KN/m3; L= 4,5 m ; 

h =0,5 m 
 F0 Q Fill Wall 

(hw=1m) 
φ0 

(grades) α 

equilateral pointed arch 10    ≥ 47 3,10 
xC (m) θ0 RI (m) 10  γf =16  ≥ 57 9,18 

0 0,5236 4,5 
 

 10   ≥ 17 39,14 
 10 γf =16  ≥ 17 38,39  

10 10 γf =16 γw =16 ≥ 24 21,05 
1/10 pointed arch 10    ≥ 42 2,73 

xC (m) θ0 RI (m) 10  γf =16  ≥ 52 7,95 
0,45 0,4605 4,05 

 
 10   ≥ 18 38,07 
 10 γf =16  ≥ 18 37,77  

10 10 γf =16 γw =16 ≥ 24 19,76 
1/9 pointed arch 10    ≥ 41 2,69 

xC (m) θ0 RI (m) 10  γf =16  ≥ 51 7,81 
0,5 0,4528 4 

 
 10   ≥ 18 37,93 
 10 γf =16  ≥ 18 37,70  

10 10 γf =16 γw =16 ≥ 22 19,60 
1/8 pointed arch 10    ≥ 40 2,63 

xC (m) θ0 RI (m) 10  γf =16  ≥ 50 7,63 

0,5625 0,4429 3,937
5 

 
 10   ≥ 18 37,74 

 10 γf =16  ≥ 18 37,60  
10 10 γf =16 γw =16 ≥ 22 19,39 

1/7 pointed arch 10    ≥ 39 2,56 
xC (m) θ0 RI (m) 10  γf =16  ≥ 49 7,40 

0,64285
7 0,4297 3,857

1 

 
 10   ≥ 19 37,45 

 10 γf =16  ≥ 19 37,32  
10 10 γf =16 γw =16 ≥ 22 19,10 

1/6 pointed arch 10    ≥ 38 2,47 
xC (m) θ0 RI (m) 10  γf =16  ≥ 48 7,10 
0,75 0,4115 3,75 

 
 10   ≥ 19 37,13 
 10 γf =16  ≥ 19 36,98  

10 10 γf =16 γw =16 ≥ 22 18,69 
1/5 pointed arch 10    ≥ 37 2,33 

xC (m) θ0 RI (m) 10  γf =16  ≥ 47 6,65 
0,9 0,3844 3,6 

 
 10   ≥ 19 36,59 
 10 γf =16  ≥ 19 36,46  

10 10 γf =16 γw =16 ≥ 22 18,12 
1/4 pointed arch 10    ≥ 35 2,12 

xC (m) θ0 RI (m) 10  γf =16  ≥ 45 5,07 
1,125 0,3398 3,375 

 
 10   ≥ 20 35,70 
 10 γf =16  ≥ 20 35,58  

10 10 γf =16 γw =16 ≥ 22 17,17 
1/3 pointed arch 10    ≥ 28 1,73 

xC (m) θ0 RI (m) 10  γf =16  ≥ 38 4,80 
1,5 0,2526 3 

 
 10   ≥ 22 32,71 
 10 γf =16  ≥ 22 33,59  

10 10 γf =16 γw =16 ≥ 25 15,43 
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For values of the friction angle ϕ0 ≥ 47° the load’s multiplier α results 3,10 and the collapse 
mechanism is characterized by five rocking crises (Fig. 6). In figure 7 is showed the curve of 
the pressures and in the Figures 8-10 are showed the compressive strength, the shear and the 
bending respectively.  
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Figure 6 : Collapse mechanism  Figure 7 : Curve of the pressures  
 

 

  
Figure 8 : Compres-

sive strength          
Figure 9 : Shear  Figure 10 : Bending  

moment   
 
Example 2: Equilateral pointed arch subject to a live load distributed with a greater intensity 
on the abutments of arch (Q0 ÷ Q4=1KN; Q5 ÷ Q8=60KN). 
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Figure 11 : Collapse mechanism  
 

Figure 12 : Curve of the pressures 
 

 
For values of the friction angle ϕ0 ≥ 22° the load’s multiplier α results 43,35 and its collapse 
mechanism (see Figure 11) is characterized as for the example previously examined still by five  



 
 
 
 

 
E. De Rosa and F. Galizia  665 
 

 

rocking crises, but this time with opposite openings. 
In Figures 12 is showed the curve of the pressures and in the Figures 13-15 are showed the 

compressive strength, the shear and the bending moment diagrams respectively. Besides we 
have found that in the two cases examined, increasing the quantity ko, the multiplier 
α  decreases always but the collapse mechanism never changes.  

 

  
Figure 13 : Com-
pressive strength 

Figure 14 : Shear Figure 15 : Bending 
moment 

 
Example 3: Equilateral pointed arch subject to a force F0=10KN and an uniformly distributed 
load Q=10KN, as live loads and to the fill and to a wall (hw=1m) up the fill, as dead loads.  
 
For values of the friction angle ϕ0 ≥ 24° the load’s multiplier α is 21,05 and the collapse mecha-
nism is characterized by six rocking crises (Fig. 16). In Figure 17 is showed the curve of the 
pressures and in the Figures 18-20 are showed the compressive strength, the shear and the bend-
ing moment diagrams respectively. 
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Figure 16 : Collapse mechanism Figure 17 : Curve of the pressures 
 

 

  
Figure 18 : Com-
pressive strength Figure 19 : Shear Figure 20 : Bending  

moment 
 

Also in this case, varying the types of pointed arches, the multiplier α decreases (see table 1), 
but the collapse mechanism do not change excepted for the 1/3 pointed arch for that the col- 
lapse mechanism is characterized by five rocking crises (Fig. 21). 
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3.3 Evaluation minimum depth h   
A second application regards the evaluation of minimum depth h of various types of pointed 
masonry arches subjected to different loads (see table 2). Of some of them, the collapse con-
figuration and moreover the curve of the pressures, the diagrams of compressive strength, of 
shear and of bending moment has been represented. 

 
Example 4: Equilateral pointed arch subject to a forceF0 =10 kN and a uniformly distributed  
load Q = 10 kN/m and to the fill and to a wall of height hw = 1 m. 
 
For values of the friction angle ϕ0 ≥ 17° the minimum depth h results 0,26 m and the collapse 
mechanism is characterized by six rocking crises (Fig. 22). In Figure 23 is showed the curve of 
the pressures and in the Figures 24-26 are showed the compressive strength, the shear and the 
bending moment diagrams respectively. Varying  the types of pointed arches, the minimum 
depth h  increases (see table 2).  

4. CONCLUSIONS 

By the dates reported in the two tables it is possible to observe as, for the same loads and den-
sity of the materials, the highest load’s multipliers and the lowest depts h are attained for the 
equilateral pointed arch. These results confirm that the stability and the safety of an arch grows 
greatly when the arches verge on a pointed shape and the arch that has a better behaviour is the 
equilateral pointed arch.  
We have besides noted that for all the various types of pointed arches:  
-  the behavior essentially don’t change varying the span L and the depth h, but change only the 
values of the multiplier.  

β

 
Figure 21 : 1/3 Pointed arch                  
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Figure 22 : Collapse mechanism Figure 23 : Curve of the pressures 
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-  to obtain only rocking crises, the friction angle ϕ0 doesn’t can be smaller than a determinate 
value because in these cases there are sliding crises and the load’s multiplier reduces. 
-  nothing changes increasing the minimum value of the friction angle required to obtain only 
rocking crises. 
We have also verified as either the load’s multipliers or the values of the friction angle required 
to obtain only rocking crises change taking into account the circumscribed yield domain (3).  
For instance, for Example 3 the average increases of load’s multipliers and of values of the fric-
tion angle are respectively of 5 ÷ 6% and of 1 ÷ 2 grades.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Table 2   

  LOADS 
Angle of  
internal 
friction 

 

Pointed Arches 
γA=16 KN/m3; L= 4,5 m  F0 

(KN) 
Q 

(KN) 
Fill 

(KN/m3) 
Wall 

(KN/m3) 
(hw=1m) 

φ0 
(grades) 

h min 
(m) 

equilateral pointed arch 10    ≥ 31 ≥ 0,35 
xC (m) θ0 RI (m) 10  γf =16  ≥ 33 ≥ 0,18 

0 0,5236 4,5 
 

 10   ≥ 25 ≥ 0,29 
 10 γf =16  ≥ 28 ≥ 0,27  

10 10 γf =16 γf =16 ≥ 17 ≥ 0,26 
1/10 pointed arch 10    ≥ 29 ≥ 0,36 

xC (m) θ0 RI (m) 10  γf =16  ≥ 30 ≥ 0,18 
0,45 0,4605 4,05 

 
 10   ≥ 25 ≥ 0,30 
 10 γf =16  ≥ 25 ≥ 0,24  

10 10 γf =16 γf =16 ≥ 17 ≥ 0,27 
1/9 pointed arch 10    ≥ 28 ≥ 0,37 

xC (m) θ0 RI (m) 10  γf =16  ≥ 26 ≥ 0,18 
0,5 0,4528 4 

 
 10   ≥ 26 ≥ 0,30 
 10 γf =16  ≥ 26 ≥ 0,24  

10 10 γf =16 γf =16 ≥ 17 ≥ 0,27 
1/8 pointed arch 10    ≥ 28 ≥ 0,37 

xC (m) θ0 RI (m) 10  γf =16  ≥ 26 ≥ 0,18 

0,5625 0,4429 3,937
5 

 
 10   ≥ 27 ≥ 0,30 

 10 γf =16  ≥ 27 ≥ 0,23  
10 10 γf =16 γf =16 ≥ 17 ≥ 0,27 

1/7 pointed arch 10    ≥ 27 ≥ 0,37 
xC (m) θ0 RI (m) 10  γf =16  ≥ 26 ≥ 0,19 

0,64285
7 0,4297 3,857

1 

 
 10   ≥ 24 ≥ 0,30 

 10 γf =16  ≥ 24 ≥ 0,23  
10 10 γf =16 γf =16 ≥ 17 ≥ 0,27 

1/6 pointed arch 10    ≥ 27 ≥ 0,38 
xC (m) θ0 RI (m) 10  γf =16  ≥ 26 ≥ 0,19 
0,75 0,4115 3,75 

 
 10   ≥ 22 ≥ 0,31 
 10 γf =16  ≥ 22 ≥ 0,22  

10 10 γf =16 γf =16 ≥ 17 ≥ 0,28 
1/5 pointed arch 10    ≥ 26 ≥ 0,38 

xC (m) θ0 RI (m) 10  γf =16  ≥ 26 ≥ 0,20 
0,9 0,3844 3,6 

 
 10   ≥ 19 ≥ 0,31 
 10 γf =16  ≥ 21 ≥ 0,21  

10 10 γf =16 γf =16 ≥ 18 ≥ 0,28 
1/4 pointed arch 10    ≥ 25 ≥ 0,40 

xC (m) θ0 RI (m) 10  γf =16  ≥ 26 ≥ 0,21 
1,125 0,3398 3,375 

 
 10   ≥ 20 ≥ 0.32 
 10 γf =16  ≥ 22 ≥ 0,21  

10 10 γf =16 γf =16 ≥ 18 ≥ 0,29 
1/3 pointed arch 10    ≥ 24 ≥ 0,43 

xC (m) θ0 RI (m) 10  γf =16  ≥ 25 ≥ 0,24 
1,5 0,2526 3 

 
 10   ≥ 24 ≥ 0,33 
 10 γf =16  ≥ 24 ≥ 0,23  

10 10 γf =16 γf =16 ≥ 20 ≥ 0,31 
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Taking into account the circumscribed yield domain equally we have noted a reduction of the 
values of minimum depth h. For instance, for Example 3 the average reduction is more than 
30%.  
In the end we have simulate the effect of a chain throw two horizontal forces Fo applied, once 
on the third last voussoirs and once on the last voussoirs, and we have checked a remarkable 
increase of load’s multiplier, particularly when the forces are applied on the third last voussoirs. 
For instance for Example 3, for Fo = 250 KN, the load’s multiplier increases more than 40% 
when the forces are on last voussoirs and more than 100% when the forces are on the third last 
voussoirs. 
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